

 WARTHOGWARTHOG

 University of DelawareUniversity of Delaware

 IGVC 2009 IGVC 2009

Team members

Conor Gilsenan (Junior, CIS)
Kevin Graney (Sophomore, CIS)

Kevin Schultz (Junior, ME)

Yan Lu (Grad student, CIS)
Mehmet Kocamaz (Grad student, CIS)

Faculty adviser statement

I certify that the engineering design in the vehicle by the current student team has been significant and
equivalent to what might be awarded credit in a senior design course.

 __

Prof. Christopher Rasmussen
Dept. Computer & Information Sciences
University of Delaware

1 Introduction

Warthog is entering the Intelligent Ground Vehicle Competition for the third time, its rookie entry

having been in 2007. In the first year much time was spent on hardware development and headaches

(like two major motor failures in the month before the competition), while last year we had more time

for software development and testing. Our performance in the navigation challenge was good, modulo

some issues discussed below, but despite considerable efforts we failed to improve on a poor showing

in the autonomous challenge. This year we have devoted considerably more focus to the autonomous

challenge issues. Given the already-done work from previous years, the team this year could be

smaller and with a flat organization. Many decisions were made by the entire team in weekly

meetings, but there was plenty of time for students to work on miscellaneous hardware-oriented

projects related to new sensors and for a focused rethink of our computer vision and motion planning

algorithms. We estimate that an aggregate of 300 person-hours have been put into the project this

year.

Hardware and software issues, milestones, goals, and resources were tracked through a password-

protected wiki page. In addition, several key project management tools were used. All code was kept

in an SVN repository (http://subversion.tigris.org), Trac was used for bug tracking and as an interface

for browsing the code (http://trac.edgewall.org).

Innovations

The major hardware innovation this year is the replacement of the primary camera with an

omnidirectional camera mounted considerably higher. The omnidirectional capability comes not from

a catadioptric set-up, but rather a fisheye lens on a high-resolution camera. The wide field of view and

improved color and exposure performance are expected to yield a significant improvement in our

autonomous challenge capabilities. As can be seen in the image on the cover page, an aluminum

superstructure has been added to the top of the robot to facilitate sensor mounting, additional

computers, and to better hold the payload. The sensor “mast” was designed to be easily raised and

lowered by several feet in order to stow the robot for travel. Internally, several sliding rods have been

added to allow two difficult-to-access power buttons to be pressed more easily. Several fans with LED

lights have also been added to keep electronics devices cool and help illuminate dark recesses. For

safety, we have also added front and rear bumpers to the e-stop system to prevent crashes where the

motors keep driving, and all-weather sonars as low-voltage proximity sensors for guarded motion even

under manual control (these were added after the picture was taken).

Many changes have been made to the computing subsystem. An analysis of last year's performance

indicated that our single laptop was overloaded with tasks, so we have gone to a distributed system of

3 laptops: 1 low-power netbook to handle motor control and low-level safety monitoring, and 2

workstation-class laptops to divvy up image processing and ladar processing/motion planning tasks,

respectively. This has been fairly straightforward given last year's move to the IPC message-passing

library (http://www.cs.cmu.edu/~ipc). The netbook is always on when the robot is in operation (even

under manual control) but the workstation laptops are only needed for autonomous activities. Only the

ladar/motion laptop is used for the navigation challenge, while both are needed for the autonomous

challenge.

In terms of Warthog's software, there have been three major sets of changes in the areas of general

safety, the navigation challenge, and the autonomous challenge. First, a software module on the

netbook now monitors the ladars and sonars for danger-close obstacles and has the power to slow or

stop the robot, independent of the high-level motion planner that handles steering. This should

prevent accidents like last year where an overloaded module leads to motor-control lags that may

cause a crash. The navigation challenge module was working fairly well last year, but needed two key

changes. First, the function which evaluates whether a hypothetical motion trajectory will hit an

obstacle was rewritten and now runs more than an order of magnitude faster. Moreover, the function

that evaluates alternative trajectories to pick the best one is pre-emptible—it is aware of how much

time it is taking and will return a “best so far” trajectory when the deadline is reached. (Last year it

was this function running past its deadline in certain situations that caused us to crash into the long

fence). Second, the planner which generates forward trajectories obeying differential constraints

(including a minimum turning radius) between start and end configurations in the absence of obstacles

has been improved—it returns a plan in every situation now, whereas last year there were a few

configurations that were wrongly flagged as infeasible.

The area with the most software changes is our autonomous challenge code. Our new

omnidirectional camera, mounted in a new location, has required considerable efforts to calibrate both

internally and externally. We have been experimenting with algorithms for manual control of the

camera's exposure settings, but empirically the auto-exposure function seems to work much better

than our previous camera. We have a variety of new front ends for segmenting the painted white lines

robustly including bilateral filtering and and k-means clustering in color space—we are still evaluating

which gives the best performance. Our line tracker has been significantly modified from last year as

well. Rather than a bottom-up approach using the Hough transform and a variety of states to handle

different robot orientations with respect to the lines, we have a unified top-down particle filter that

hypothesizes pairs of lines (or curves, in a higher-order version) and finds the maximum likelihood

pair. With our omnidirectional images, this approach allows a cleaner formulation since no line is ever

out of view regardless of how the robot is oriented.

2 Hardware

2.1 Chassis and drive system

Warthog is based on a Segway RMP 400. The RMP 400 is a 4-wheel, differential drive or "skid steer"

vehicle with 21" ATV tires. Each pair of wheels (front and rear) constitutes a powerbase. In contrast

to other Segway products which have only one powerbase, the RMP 400 is statically stable rather

than dynamically---it does not require motion to achieve balance. An independent electric motor

supplying 0.071 Nm/amp of torque at the motor shaft drives each wheel through 24:1 gearing. The

motors are capable of 70 amps peak current per wheel and 24 amps continuous current. The top

speed of the RMP 400 is 18 mph; this is limited in hardware for the competition to 5 mph. The robot

can climb 45 degree slopes and make zero-radius turns (aka "spin in place"). In 2007 our motor

failures seemed to be associated with making such turns, which put maximum stress on the motors

because of friction as the wheels skid; since then we have implemented a minimum radius for turning,

which makes path planning somewhat trickier.

Two 72V lithium ion batteries run the motors in each powerbase. Across both powerbases, these

have a total capacity of 1600 watt-hours and provide an average run time of 12 hours under good

terrain and temperature conditions. A charger integrated into each powerbase recharges the batteries

from empty in an average of 8 hours. Two buttons control operation of each powerbase. One

supplies power to the User Interface (UI) electronics, and the other activates the motors. Both must

be pressed before a powerbase can move, so four buttons must be pushed before the entire robot is

ready to receive and act upon motor commands. As alluded to above, the buttons for the front base

are in a difficult to reach spot inside the chassis. This year we installed two sliding rods with rubber

ends to create “virtual” buttons on the outside of the chassis to make starts and restarts much easier.

We devoted considerable effort to researching and spec'ing out a solution involving solenoids, but

ultimately decided against it due to the complexity of the power-conditioning requirements.

As delivered, the RMP 400 had a length of 44.5", width of 30.5", and height of 21". Ground clearance

is about 3.5". Our physical modifications consisted of installing an internal polypropylene and

aluminum shelving system to secure electronic devices, batteries, and the control computer, as well as

external mounting of the sensors and some switches and buttons on the top and rear plates,

respectively. This year we have an 8020 aluminum superstructure which raises the primary camera

by about 18” for a better angle for line detection, as well as adding a shelves for the payload and two

laptops. The sensor mast is adjustable to a maximum height of about 55" (the top of the GPS

antenna) while leaving the length and width unchanged.

2.2 Safety

A large red e-stop button is mounted on the rear of the vehicle and is attached directly to the Segway-

provided e-stop circuits of both powerbases . This button physically latches--it must be pulled out to

disengage it. However, the Segway e-stop circuit actually shuts the motors off rather than simply

pausing them. Thus, in addition to unlatching the e-stop button, the motor activation buttons must be

pressed to bring the robot out of e-stop. Wireless e-stop functionality is provided by an aftermarket

automotive keyless entry system which interfaces directly with the Segway-provided e-stop circuits.

The nominal range of this device is 100 feet in open air. The remote e-stop is connected in series with

the manual e-stop such that triggering either one causes an e-stop.

This year we have also added several all-weather sonars from MaxBotix to use as low-voltage

proximity sensors, even when the robot is being manually joysticked. We also have mounted 24”-wide

front and rear bumpers from Tapeswitch wired in series with the other e-stop devices so that any

crash stops the motors automatically. These bumpers require 10 lbs. of force to activate.

2.3 Computing

Up to three computers control Warthog; all run Ubuntu 8.10 for ease of unified library updates, etc. All

of the laptops are networked together via Ethernet. The “base” computer is a Dell Mini-9 netbook with

an Intel Atom N270 CPU, 512 Gb RAM, and a 32 Gb solid state drive. The internal battery provides

about 3 hours of runtime, but we have a DC-DC converter attached to our auxiliary battery that allows

all-day operation. Each of the workstation laptops is a Dell M2400 Precision with an Intel Core Duo

T9600 at 2.8 GHz, 4 Gb RAM, and a 7200 rpm hard drive. The internal lithium-ion batteries in these

provide an average run time of about 2.5 hours and must be swapped for continued operation. The

wattage requirements of the workstation laptops are too high for our DC-DC converter to tap into the

auxiliary battery. The Mini-9 computer is connected to the RMP 400 via USB (technically, two cables

through a hub--one per powerbase, since duplicate commands are sent to the front and rear

powerbases). Low-level motion commands are sent in the form [desired forward speed, desired turn

rate]. The UI electronics take care of PID control to achieve and maintain the commanded values.

A wireless Logitech Rumblepad joystick is used to control the robot remotely when necessary. In

open air, it offers an effective range of 50-100 feet. For higher-level remote commands and telemetry,

we use a Fujitsu P1610 tablet PC running Ubuntu communicating with a wireless router onboard the

robot. This computer is extremely portable, weighing about 1.0 kg, and has an 8.9" touch-sensitive

screen. It makes it easy to walk along with Warthog over all kinds of terrain while monitoring the state

of its software as it processes sensor readings and plans motions.

2.4 Sensors

Warthog's primary sensors are a SICK LMS-291 laser range-finder, a Unibrain Fire-i400 Firewire color

camera, a Novatel Propak-V3-HP GPS, and a PNI TCM2-50 digital compass. New this year is a Pt.

Grey Flea2 camera with a fisheye lens for omnidirectional imagery, as well as two sonar devices for

proximity warnings. The Segway RMP 400 base also provides extensive proprioceptive sensing

regarding odometry, wheel torques, pitch and roll angle and rotational velocities, remaining battery life,

and so on. A diagram of all IGVC-relevant external devices and how they are connected to the control

computer is given below.

Figure 1: List of major sensors and how they connect to the control computers

2.5 Auxiliary electrical system

While the RMP 400's motors are powered by Segway-provided batteries integral to each base, all

other electrical devices except the workstation laptops require a separate power system. Two 12V, 32

Ah AGM deep-cycle lead-acid batteries are connected in series to create a 24V “auxiliary” battery.

These weigh 50 lbs. total. AGM batteries are excellent for the rugged conditions created by

autonomous vehicles; they cannot spill even if broken and can be mounted in any orientation. An

externally-mounted Xantrex battery monitor with an LCD display shows the state of the battery. It has

a serial connection to the control computer to report charge remaining for graceful shutdowns. A 24V,

8 A smart charger also rides onboard Warthog, permanently attached to the battery. Plugging in its

cable to an AC outlet commences charging that does not need to be monitored.

The batteries are connected via a fuse to a Vicor ComPAC DC-DC converter which outputs 24V, 12V,

and 5V power at up to 100 watts per output. The Vicor offers EMC filtering, transient protection, and

reverse polarity protection at about 85% efficiency. The arrangement of the various devices in the

auxiliary electrical system is shown in the figure above.

One new component in the system this year is a 12V to 19V DC-DC converter. It allows the Mini 9

Figure 2: Auxiliary electrical system components

laptop to be run from these batteries, extending runtime virtually indefinitely.

Below is a table of the electronic devices which receive their power from the DC-DC converter (the

battery monitor draws power directly from the battery). As can be seen, the watts drawn from the DC-

DC converter are nowhere near its limits. The total average current draw, with a 10% safety factor

added, is about 2.4 A. Given the capacity of the batteries and the efficiency of the converter, this

translates into an expected run time of almost 6 hours to go from a full charge to a 50% charge.

24V devices Average power Average amps

SICK ladar 20 W 0.84 A

Mini 9 laptop (19V) 30 W 1.6 A

12V devices

Novatel GPS 2.5 W 0.21 A

Firewire hub (old camera) 1 W 0.084 A

Wireless e-stop receiver 1.2 W 0.1 A

LED fan 2.4 W 0.2 A

5V devices

USB hub (wireless joystick) 1 W 0.20 A

TCM2-50 digital compass 0.1 W 0.02 A

Hokuyo ladar 2.5 W 0.5 A

Wireless router 1 W 0.2 A

Sonar x 2 0.5 W 0.1 A

Firewire card (new camera) 1 W 0.2 A

Table 1: Power consumption of electronic devices

2.6 Major component list

The table on the next page lists the major components detailed in the previous subsections that went

into the construction of Warthog, their retail cost, and the cost to the team this year (items carried over

from previous years are not counted in the latter category).

 Components Item Retail cost Cost this year

Dell Mini 9 $400 $400

Dell Precision M2400 x 2 $1,700 $1,700

Tapeswitch x 2 $350 $350

MaxBotix sonar $200 $200

Pt. Grey Flea2 $800 $800

MassCool 80 mm LED fan $4.50 $4.50

Existing components

Segway RMP400 $28,500 -

SICK LMS-291 $5,000 -

Novatel Propak-V3-HP $5,500 -

 Components Item Retail cost Cost this year

PNI TCM2-50 $800 -

D-Link USB hub $27 -

2 x Concorde SunXtender

PVX-340T battery
$188 -

Vicor ComPAC DC-DC

converter
$436 -

Soneil 2416SRF charger $160 -

Xantrex battery monitor $225 -

Fujitsu tablet PC $1,629 -

Logitech Rumblepad $20 -

D-Link DGL-4300

wireless router
$120 -

Hokuyo URG-04LX $2,500 -

Table 2: Major hardware components and their costs

3 Software

Warthog's software architecture consists of a set of modules, which this year are separate processes.

Many of the modules are associated with device drivers—they talk directly to sensors and stream raw

data, as well as providing log writing and reading functionality. A set of middle level modules filter the

output of the sensor modules, but make no actual decisions about what to do. Finally, at the top level

are the pilot modules, which are the only ones allowed to send motor commands. Only one of these is

running at any given time. All modules used are listed below in alphabetical order. Unless otherwise

noted, each module is used for both challenges (“AC” = autonomous challenge, “NC” = navigation

challenge).

Module Purpose

boss Process health monitor. Starts and stops modules, kills and
restarts hung modules. We are using the Upstart task/service
daemon (http://upstart.ubuntu.com) to automatically restart tasks
that die.

compass Digital compass data capture, including heading, pitch/roll angle,
and temperature

dashboard GUI interface for module management, real-time telemetry, and
visualization of sensor data. Typically runs on wirelessly-
connected laptop or tablet PC

gps Novatel GPS data capture, including UTM coordinates, heading,
and velocity

hokuyo_ladar Hokuyo ladar range data capture and transformation to vehicle
coordinate frame. Useful for slope estimation, negative obstacle
detection.

ladar SICK ladar range data capture and transformation to vehicle
coordinate frame

pilot_auto (AC only) Executive module for Autonomous Challenge. Performs image
capture, internal/external camera calibration, low-level image
processing, line detection and tracking. Integrates input from
ladar, and state data to decide which direction to drive.

pilot_nav (NC only) Executive module for Navigation Challenge; reads list of waypoints
and integrates waypoint homing with obstacle avoidance.

segway Segway RMP 400 data capture and motor control. Embedded in
this module is joystick driver for manual piloting

state Measure and filter robot position, heading, velocity, and other
positional variables

Table 3: Software modules used for both challenges

External libraries used include OpenCV for computer vision (http://opencvlibrary.sourceforge.net) and

the Bayes++ Bayesian Filtering library for state filtering (http://bayesclasses.sourceforge.net). A few

selected modules are explained in more detail in the following pages.

3.1 dashboard

Expanded and improved this year is a GTK+ GUI program called “dashboard” for monitoring low-level

robot health as well as setting high-level goals. A screenshot of the program is shown below.

Running modules are indicated in the table at upper-left, while the other top-level panels show

numerical and textual data about the selected module. Messages and instructions may also be sent

to the modules through these panels, as for example with the “speed” and “turn rate” fields below.

The bottom panels display timestamped, graphical information in a user-choosable fashion. Here the

bottom-left panel is showing the state of the robot and its path history, the middle panel is showing raw

ladar returns (in this configuration the ladar was pitched down, so the line behind the cone is

groundstrikes), and the bottom-right panel shows what the camera sees (the camera image is from

last year's narrow-angle camera).

Figure 3: dashboard module screenshot

3.2 pilot_nav (Navigation Challenge)

Our SICK laser range-finder is set to a maximum range of about 8 m for maximum range resolution, a

180 degree field of view, and a 30+ fps refresh rate. It is mounted about 0.5 m (20") above the ground

with a level scan plane. This allows easy obstacle detection (vs. a downward-pitched scan plane) and

longer-range motion planning, but makes shorter obstacles invisible. In general, we would want

additional ladars or camera image-based obstacle detection algorithms to fill in blind spots, but we

have not found these to be necessary at IGVC.

Our base motion planner is derived from a Dubins car model, which accounts for differential

constraints on Warthog's motion in the form of a minimum turning radius and rules out reverse motion

(as we do not have adequate rear-facing sensors). Under this model, the only maneuvers permitted

are straight-line and circular arc (left or right) segments. New this year is a complete Dubins planner

which works for all start and end configurations in the absence of obstacles. This plan is always the

first one we consider during the NC. However, we must also incorporate obstacle avoidance, and our

primary method here (used in both the NC and AC) is a motion planner based on a modified rapidly-

exploring random tree (RRT). Our RRT-inspired approach generates a set of random short-term plans

from the current location consisting of Dubins maneuvers. These maneuver sequences are converted

to trajectories and checked against the local obstacle map (ladar-only in NC). Trajectories which

collide with obstacles (i.e., come within a safety margin based on Warthog's size) are removed from

consideration. Among those remaining, a “best” plan is selected and executed which gets the robot

closest to a nearby goal point. In the case of the NC, this is just the next waypoint. The critical

function which caused us to crash last year was the trajectory collision checker—it was too slow when

there were many obstacles (like a all of the ladar hits along a fence). This function has been rewritten

and is an order of magnitude faster this year.

3.3 pilot_auto (Autonomous Challenge)

Whereas our NC module from last year has merely been upgraded and streamlined, our AC approach

this year is completely different both from a hardware and software point of view. As previously

mentioned, we are now using a different camera with better color, exposure performance, and

resolution, and we have fitted it to an omnidirectional (aka “fisheye”) lens. Our lens and camera

orientation yield a field of view of about 180 degrees in front of and behind Warthog, and 145 degrees

to the left and right. Our camera height has also been raised, yielding a better angle for line paint

detection and ensuring that both the left and right lines are visible at all times (modulo occlusion by

barrels). A sample raw image from the camera is shown below at right. On the left in purple are SICK

ladar obstacles in vehicle coordinates; concentric circle radii differ by 1 m. Overlaid red points are

obstacles detected by the SICK ladar and transformed to image coordinates.

Figure 4: Ladar obstacles and omnidirectional camera view with ladar overlaid

There are two major tasks for the AC. First is the detection of obstacles—where not to go. Second is

the setting of a goal location, which is far from straightforward with no GPS waypoints as there are in

the NC. For the first problem, the SICK ladar functions identically here as in the NC, creating a map of

obstacles for the RRT planner to avoid. The critical challenge in the AC, of course, is to also add the

painted lines to the obstacle map. This year we have opted for more of a top-down approach.

Following work on the similar problem of lane-tracking for autonomous driving, we model the

approaching section of path as a curved clothoid “ribbon” and track it using a particle filter with some

custom postprocessing. The state itself has four variables, all in vehicle coordinates: (1) angle

between the path curve tangent and the vehicle heading, (2) lateral offset between the path center and

the vehicle center, (3) width of the path, and (4) path curvature (inverse radius of best-fitting circle arc

segment).

Particles consist of state hypotheses which are scored using a likelihood function which is where the

image processing occurs. In this function a given hypothesis consists of two curve segments mostly in

front of the robot derived from the state, transformed to image coordinates and sampled at discrete

intervals. At each interval along a given curve (typically there are 15-20 each for the left and right

lines), pixels in a search window (about 1 m wide) orthogonal to the curve are examined. Each search

window is assigned a score based on the ratio of the maximum to minimum intensity found, with the

intuition being that windows containing a painted line will have high ratios and windows with just grass

will have low ones. The average score over all search windows across both the left and right curves is

the likelihood for the whole hypothesis.

Intensity is measured via the blue channel of the color camera image after it has been median filtered

to reduce noise. In order to not be distracted by contrasting colors on barrels or other obstacles, or

the robot itself (since it appears in the omnidirectional image), a mask is created for each new frame

based on the SICK ladar and knowledge of the camera position and robot dimensions. Any non-zero

pixels in the mask are assumed to not belong to the ground, and thus are skipped in calculation of the

likelihood function. Any search windows that have too many masked-out pixels are omitted from the

mean score for the hypothesis because of insufficient data to be reliable.

Since circular arcs do not perfectly represent the freehand lines painted for the AC, a final refinement

step is carried out to locally warp the clothoid path estimate from the particle filter. In this step, search

windows along the state estimate curves are analyzed. It is assumed that most but not all of these

search windows do contain a painted line; here we wish to make this classification and fix the exact

location of the line. Again taking into account the obstacle/robot mask described above, the ratio of

the maximum to minimum intensity in each search window is thresholded (at about 2.0). If below

threshold, that window is considered to not have a line in it; if above, the location of the maximum is

taken to be the location of the line. Each of these filtered line detections is then placed into the vehicle

coordinate obstacle map as a virtual obstacle (along with the SICK obstacles). Some sample images

illustrating steps in the process are shown below (see caption on next page).

 (a) (b)

(c)

Figure 5: Steps in AC line finding. (a) Obstacle/robot mask (in green) used to exclude pixels from
consideration; (b) 100 zerocurvature path hypotheses from particle filter; (c) State estimate from

particle filter with search windows shown + refined line locations (red dots)

This combined obstacle map is the one used for RRT motion planning as described above in pilot_nav

section. The second major task above, setting a goal location for motion planning to terminate at, is

taken directly from the state and obstacle map as follows. The nominal goal location is a point within

the path some constant distance ahead (roughly 5 m) and on the centerline. If this point is too close to

an obstacle, it is moved to the nearest point in free space. Since the goal is defined relative to

Warthog's current location, it constant “recedes” as the robot advances.

At a higher level there is a potential problem at hairpin turns and complex barrel switchbacks with the

robot making a U-turn and heading back toward the start. This is prevented by using GPS information

on where the robot has already been to "push" it toward novel regions.

